Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1055070

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) was identified as the main host cell receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent infection. In some coronavirus disease 2019 (COVID-19) patients, it has been reported that the nervous tissues and the eyes were also affected. However, evidence supporting that the retina is a target tissue for SARS-CoV-2 infection is still lacking. This present study aimed to investigate whether ACE2 expression plays a role in human retinal neurons during SARS-CoV-2 infection. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids and monolayer cultures derived from dissociated retinal organoids were generated. To validate the potential entry of SARS-CoV-2 infection in the retina, we showed that hiPSC-derived retinal organoids and monolayer cultures endogenously express ACE2 and transmembrane serine protease 2 (TMPRSS2) on the mRNA level. Immunofluorescence staining confirmed the protein expression of ACE2 and TMPRSS2 in retinal organoids and monolayer cultures. Furthermore, using the SARS-CoV-2 pseudovirus spike protein with GFP expression system, we found that retinal organoids and monolayer cultures can potentially be infected by the SARS-CoV-2 pseudovirus. Collectively, our findings highlighted the potential of iPSC-derived retinal organoids as the models for ACE2 receptor-based SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Gene Expression , Induced Pluripotent Stem Cells/cytology , Retina/cytology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Cell Culture Techniques , Cell Line , Humans , Induced Pluripotent Stem Cells/metabolism , Organoids/cytology , Organoids/metabolism , Retina/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL